Doughnut-shaped laser beam used to create fibre optics from thin air
Who needs fibre optics when you have high-powered doughnut lasers?
Keep up to date with the most important stories and the best deals, as picked by the PC Gamer team.
You are now subscribed
Your newsletter sign-up was successful
Want to add more newsletters?
Every Friday
GamesRadar+
Your weekly update on everything you could ever want to know about the games you already love, games we know you're going to love in the near future, and tales from the communities that surround them.
Every Thursday
GTA 6 O'clock
Our special GTA 6 newsletter, with breaking news, insider info, and rumor analysis from the award-winning GTA 6 O'clock experts.
Every Friday
Knowledge
From the creators of Edge: A weekly videogame industry newsletter with analysis from expert writers, guidance from professionals, and insight into what's on the horizon.
Every Thursday
The Setup
Hardware nerds unite, sign up to our free tech newsletter for a weekly digest of the hottest new tech, the latest gadgets on the test bench, and much more.
Every Wednesday
Switch 2 Spotlight
Sign up to our new Switch 2 newsletter, where we bring you the latest talking points on Nintendo's new console each week, bring you up to date on the news, and recommend what games to play.
Every Saturday
The Watchlist
Subscribe for a weekly digest of the movie and TV news that matters, direct to your inbox. From first-look trailers, interviews, reviews and explainers, we've got you covered.
Once a month
SFX
Get sneak previews, exclusive competitions and details of special events each month!
Much of this story is going to sound like hokum, but bear with me because doughnut-shaped laser beams have become my new favourite scientific innovation. Especially since scientists were able to effectively create a kind of optical fibre cable from thin air. Frickin' laser beams, man. But why do we need laser-based fibre optics when we have standard glass fibre optics?
The base problem here is in using light to transfer data. While it is much faster than using metal cables, it's easy to lose data through light beam expansion as it stretches down the beam. The tactic to minimise this kind of data loss right now, which I'm sure you're familiar with, is by the use of fibre optic cables.
Fibre optic technology has been delivering us from dead-slow internet speeds since the '70s, but the kind of light beams necessary for more intense work have the potential to melt generic fibre optic cables. So, the question has remained: How can we send light-based data over long distances when fibre optics aren't an option?
Thanks to Howard Milchberg, and his team of researchers at the University of Maryland, that question may have been answered with a powerful laser beam, curled into the shape of a doughnut (via New Scientist).
By firing their laser for just 300 quadrillionths of a second, the researchers were able to create a 45 metre tubelike structure seemingly from thin air, which was able to guide a light pulse without the use of physical cabling.
Best CPU for gaming: The top chips from Intel and AMD
Best gaming motherboard: The right boards
Best graphics card: Your perfect pixel-pusher awaits
Best SSD for gaming: Get into the game ahead of the rest
The structure is known as an 'air waveguide', and works by blasting air particles with extreme heat to change their structure just enough that the light pulse stays confined. And while 45 metres may not seem like a long distance, it's a darn sight better than a previous attempt in 2014, which resulted in an air waveguide just 70 centimetres in length—not much use to anyone, but a step in the right direction.
You may be disappointed to learn this kind of tech is unlikely to end up improving your broadband speeds with super high-powered lasers. While fibre optics is a very close analog, the applications for air waveguides sit in the more obscure field of biohazard detection. Soon we could see this tech seeking out radioactive materials from miles away, though much more powerful lasers will be necessary if those kinds of distances are to be achieved.
Keep up to date with the most important stories and the best deals, as picked by the PC Gamer team.

Having been obsessed with game mechanics, computers and graphics for three decades, Katie took Game Art and Design up to Masters level at uni and has been writing about digital games, tabletop games and gaming technology for over five years since. She can be found facilitating board game design workshops and optimising everything in her path.

