TODO alt text

The best SSD for gaming

Faster storage means shorter load times and a snappier system.

SSDs have been making inroads in the PC market for the past year, and we're at the point now where every PC, gaming or otherwise, should have an SSD for the boot drive and primary applications. It's arguably the best upgrades you can make to your PC for general responsiveness and performance. An SSD won't necessarily improve framerates (though it might smooth out a few spikes in games that feature large environments), but they do improve load times, and Windows just feels so much better with an SSD.

PC building guides

Looking for more PC building advice? Check out our build guides: 

Budget gaming PC
(~$750/£750) - A good entry-level system.
Mid-range gaming PC
(~$1,250/£1,250) - Our recommended build for most gamers.
High-end gaming PC
(~$2,000/£2,000) - Everything a gamer could want.
Extreme gaming PC
(>$3,000/£3,000) - You won the lotto and are going all-in on gaming.

Prefer to buy a prebuilt than building it yourself? Check out our guide to the Best Gaming PCs.

The SATA interface has been around for ages, and the current 6Gbps revision 3.0 specification is nearly a decade old, but it continues to deliver the best bang for the buck, and it's ubiquitous. Manufacturers recognize this, which is why Samsung just launched its new 860 Pro and 860 Evo models to replace the 3-years-old 850 Pro and 850 Evo. Performance didn't change much, but manufacturing costs are likely lower, which could pave the way for price cuts in the future. Prices are higher right now, but we'll be keeping an eye on the newcomers.

Hardcore gamers will want a large hard drive for less critical files, and with game sizes swelling past 100GB in some cases, trying to put everything on an SSD can be prohibitively expensive. Or you could go with a 120TB NAS storage solution for archives and media libraries, if saving money isn't your first priority. Either way, SSDs are big and cheap enough to finally replace old school hard disks.

Here are the best SSD deals today

A NAND shortage caused a spike in SSD prices for the past 18 months, thanks to the increased demand from smartphones and laptops. But we have good news, as prices are trending downward. Compared to last month, 500GB-class SSD prices have dropped another $10-$20. That's largely thanks to a ramp up in production from newer fabrication facilities, along with higher capacity 3D NAND. The least expensive 480GB drives are now very close to $100 again, a price we haven't seen since mid-2016.

SSDs come in a variety of form factors, including SATA and mSATA drives, a few SATA Express solutions, PCIe add-in boards, M.2 'gumstick' drives, and U.2 models as well. The M.2/U.2/PCIe drives are the fastest choice, with the NVMe protocol further improving performance, but they tend to carry a hefty price premium. Plus, compared to good SATA drives, for many workloads, including games, the benefits are pretty slim, though our best NVMe SSDs guide has higher performance options if that's what you're after.

For gaming, the best option is a drive that combines performance, capacity, and reliability at a price that won't make your wallet cry out in pain. That generally means SATA drives, though some of the least expensive NVMe alternatives are also worth a look. We've selected the best SSD for gaming, based on the above criteria, using our own performance results.

TODO alt text

The best SSD

  • Outperforms more expensive SSDs
  • Great price per gigabyte
  • Speed can drop under heavy prolonged write loads
  • Slower than M.2 / U.2 NVMe drives

The king is dead! Long live the king! After spending several years as the top pick for gaming SSDs, we've finally found a suitable replacement for Samsung's 850 Evo. Perhaps even more surprising, it's not the Samsung 860 Evo (though that's a good drive as well—see below). Instead we're going with Crucial's MX500, and more specifically we're recommending the 1TB capacity, with the 500GB model being a close second.

What does the term 'best' mean, particularly when talking about a storage device? Best value for money, great real-world performance, or a brilliant feature set? The ideal SSD for a gaming PC strikes that perfect price/performance/reliability balance, and Crucial's MX500 does all of this. With some game install sizes now breaking the 100GB mark, it's also important to buy the largest capacity you can reasonably afford, and at $240-$250 for 1TB, the MX500 delivers the goods.

Read More
TODO alt text

The best budget SSD

  • Excellent price per GB
  • Top of the chart performance
  • Still more costly than a hard drive
  • Slightly slower than higher capacity model

The Crucial MX500 500GB gets the nod for the best budget SATA SSD. It's not the absolute cheapest 500GB-class drive, but it's only about $15 more than the cheapest current drive. The cheapest SATA SSDs are also 480GB instead of 500GB, so in practice it's about $0.225 per GB vs. $0.248 per GB. Toss in the fact that the Crucial MX500 is often 50 percent faster than those less expensive drives and it's easy to see why we're sticking with the MX500.

There's not much to add that we haven't discussed above, but note that the 500GB model does perform a bit worse than the 1TB model under the heaviest of workloads. Most users will rarely if ever do enough sustained high-speed writes for it to matter, particularly anyone shopping for a budget SSD.

Read More
TODO alt text

The best M.2 NVMe SSD

  • Substantially faster than the best SATA SSDs
  • Good price per GB for NVMe
  • Costs substantially more per GB than our top SATA pick
  • Only good for newer PCs with M.2 slots

There are cheaper NVMe drives, but I think anyone willing to spend a bit more money to go beyond a SATA SSD will be better off going all-in with our favorite current NVMe drive. Samsung's 960 Evo 500GB wins that honor, and it clearly pulls away from even the best SATA drives. It may not make a huge difference in gaming load times, but it can read and write data at more than five times the speed of a SATA drive. You also get to avoid all the cable clutter normally involved with storage and mount the drive directly on your motherboard.

Of course, that means you have to have a newer system that actually has an M.2 NVMe slot, preferably with a Gen3 x4 PCIe connection. Most motherboards for Intel systems made in the past three years should include the necessary port, along with most AMD Ryzen boards, but some ultra budget boards omit this extra. As for performance, the 960 Evo can transfer data at up to 3,200/1,800 MB/s read/write, and 330k IOPS. It's one of the fastest NVMe drives around, and easily the best bang for the buck.

Read More
TODO alt text

The best high-end SATA SSD

  • Massive amounts of NAND storage
  • Fastest consumer SATA SSD
  • 5-year warranty and extreme endurance
  • Really expensive (though price per GB isn't bad)
  • Slams into SATA bottlenecks

Do you want the fastest SATA SSD, or the SATA drive with the most capacity? Why not both, and as an added bonus you get some extreme endurance. Samsung's 860 Evo drives aren't significantly faster than the 850 Evo, but there are a few refinements, and the huge capacity also means you're unlikely to hit situations where performance starts to drop. Basically, you can write a ton of data to the drive, every day, for five years straight, and it will keep chugging along.

Let's talk specs for a moment. The 4TB drive is rated at 550/520 MB/s read/write speeds, and 98K/90K read/write IOPS. That's basically as fast as you can go with SATA. The bigger deal is the 64-layer 3D TLC V-NAND, and Samsung has boosted the endurance from the 850 Evo's 300TB to a whopping 2,400TB. That's equal to writing over 1.3TB of data every day for five years. And just what are you doing that needs that much writing anyway?

Read More

How we test SSDs

SSDs make your whole system faster and more pleasant to use. But they matter for gaming, too. A fast-loading SSD can cut dozens of seconds off the load times of big games like Battlefield 1 or MMOs like World of Warcraft. An SSD won't normally affect framerates like your GPU or CPU, but it will make installing, booting, dying, and reloading in games a faster, smoother process.

When shopping for a good SSD for gaming, one of the most important factors is price per gigabyte. How much will you have to spend to keep a healthy library of Steam games installed, ready to be played at a moment's notice? With some games surpassing the 50GB mark, this becomes even more critical.

To find the best gaming SSDs, we researched the SSD market, picked out the strongest contenders, and put them through their paces with a variety of benchmarking tools. We also put in the research to know what makes a great SSD great, beyond the numbers—technical stuff like types of flash memory and controllers.

SSD performance and value ranked

To test the SSDs, we used a PC with an Intel Core i7-8700K, 16GB of DDR4 memory, an Nvidia GeForce GTX 1080 graphics card, and Gigabyte Aorus Z370 Gaming 7 motherboard. We use Windows 10 Pro installed on a Samsung 960 Evo as the boot drive, AHCI is enabled, and all drives are connected to the motherboard’s SATA III ports (except NVMe drives, which use the second M.2 slot). We use a combination of synthetic and trace benchmarks, as well as real-world file copying. This includes AS SSD, CrystalDiskMark, and PCMark 8.

As you can see in the benchmark rankings of current SSDs, going from the absolute slowest SATA SSD we've tested to the fastest SATA SSD is about a 50 percent increase in performance. Moving to our favorite M.2 NVMe SSD meanwhile basically doubles performance relative to the best SATA SSDs.

This is only when you're really hitting the storage subsystem, of course. If you're not running benchmarks, the real-world differences are more difficult to detect. However, in the same test suite, a good hard drive scores around 10-15. Yeah, it's that big of a jump, and you absolutely will notice the difference between any modern SSD and an HDD.

Because price and capacity are also important factors, these charts combine all three metrics to generate a different look at the drives. Prices do fluctuate quite a bit over time, and we've used the best current prices we could find for these charts, but sales can and will change positioning. In terms of overall value, Samsung's 960 Evo comes out on top, but that's perhaps putting too much of the focus on raw performance. The Crucial MX500 takes top honors for SATA SSDs in both the US and UK markets, helping to cement its position as the best SSD for gaming.

SSD Technology

The single specific advantage that makes an SSD so much faster than a hard disk is access times that are orders of magnitude faster. A hard disk depends on a mechanical arm moving into position to read data from a platter, while with an SSD, data is stored and accessed electronically. Although modern hard disks are astonishingly fast at accessing data, they’re no match for an SSD; the fastest HDD access times are still around 10ms, while any decent SSD will usually have access times under 0.1ms.

An SSD is a physically simple device. It’s made from an array of flash memory chips and a controller, which comprises a processor, memory cache, and firmware. But like most things in computing, it starts to get complicated when you look at it in more detail. NAND flash chips store binary values as voltage differences in non-volatile memory, meaning they retain their state when power is cut off. In order to change the state of a single cell (ie writing to it), a strong voltage is required. But because of the way the cells are laid out, it can’t be done on a cell-by-cell basis: an entire row has to be erased at once.

Each cell is insulated from its neighbors to preserve the value it holds, but every time a cell is programmed, the insulator becomes slightly less reliable. Eventually, after a certain number of writes, the cell becomes unable to hold any values, which is why SSDs have a limited lifespan. In the early days of flash memory, this limited number of writes was a concern, but clever tricks, improved technology, and software improvements mean it’s no longer a real issue.

If you want further proof, then have a gander at the SSD endurance experiment over on TechReport. In one of the only tests of its kind, they set about continuously writing data to select SSDs until the drives became completely unusable, in a test that went on for months. Although the odd bad sector crops up relatively early, at 100TB of writes, most of the drives survived until nearly a petabyte of data or more was written to them, far beyond the manufacturers’ ratings, and it took months of non-stop writing to reach that point.

The best drives managed 2.5PB of writes, which means even at 250GB of writes per day it would still take 10,000 days to reach that point. It’s fair to say endurance for all but the most extreme workloads is no longer an issue.

Pile Of SSDs

SLC, MLC, and TLC memory

A given quantity of physical flash memory cells can be programmed to hold either one, two, or three bits of data. A drive where each cell holds a single bit is known as SLC (Single-Level Cell). Each cell can only be in one of two states, on or off, and only needs to be sensitive to two voltages. Its endurance and performance will be incredible, but a large amount of flash memory is needed to provide a given capacity, so SLC drives have never really taken off beyond expensive server and workstation setups.

2-bit MLC (Multi-Level Cell) memory is currently the most popular kind used in consumer SSDs. Each cell holds two bits, with four binary states (00, 01, 10 and 11), so the cell needs to be sensitive to four voltages. The same amount of flash memory provides double the amount of space as SLC, so less is needed and the SSD is more affordable.

3-bit TLC (Triple-Level Cell) memory goes even further, with three bits per cell. Now each cell has to hold eight binary states (corresponding to 000, 001, 010, 011, 100, 101, 110, and 111), and performance and endurance begins to really suffer as there are eight distinct voltages that represent data. Since each cell needs to differentiate between eight voltage values, reading them reliably requires more precision, and wear and tear reduces the number of write cycles. The plus side is you get even more capacity from the same amount of flash memory, resulting in even cheaper SSDs, which is something everyone wants.

As we’ve found from testing some SSDs, manufacturers are using tricks to mitigate these negative effects with TLC flash memory, so prices can continue falling without impacting performance. These days, we're seeing increasing numbers of TLC SSDs, particularly in the budget sector, and performance has reached the point where they're generally an acceptable compromise.

Sequential Transfer Speeds

Whenever you read about an SSD or look at a review, the first figure you’ll usually see is a headline-grabbing transfer rate. Imagine read and write speeds up to 550MB/sec, or even faster in the case of PCIe SSDs. These numbers always look really impressive, and it typically represents the best-case performance you'll see from a drive. It usually involves large sequential file transfers, which means all the blocks are laid out one after the other and caching and other advantages are at their peak.

In the real world, most software applications deal with both large and small files, and at times a program might be waiting for input before it carries on, so you’ll rarely get the maximum sequential speed of your SSD. You might see these speeds when reading or writing a large 10GB movie file, but things will be a lot slower when copying a folder full of 10,000 jpeg images, HTML documents, or even a game directory.

These smaller files could be spread all over the disk and will be slower to transfer. In the case of a hard disk, that entails moving the disk head over the correct position on the platter, which adds a really long delay. SSDs are far quicker to do this, which is where the real improvement in overall responsiveness comes from.

To further complicate things, some SSDs (mostly older drives with SandForce controllers) handle uncompressed data much better than compressed data. If there’s a difference, the faster speeds when dealing with uncompressed data are the ones that are quoted. Therefore, although faster sequential speeds are always nice to see, it’s best not to judge an SSD on these figures alone, as you won't see these speeds all the time.


IOPS is another term that is often used to discuss performance of storage products, usually quoted with SSD specifications, but its direct application to real-world use isn’t simple. Put simply, IOPS means input-output operations per second. The more a device can manage, the faster it is. Except, not all IO operations are the same. Reading a tiny 512-byte text file isn’t the same thing as writing a 256KB block from a 10GB movie.

There’s no standard for how figures should be advertised, but generally companies quote the QD32, 4KB block size figure, or IOPS when 32 4KB read or write commands are queued. In the real world, applications won’t be constantly queuing up 32 4KB blocks. It will likely be a random mixture of block sizes, reads, writes, and times when the storage device is idle. For random IO (like booting the OS when lots of files from many applications and drivers are requested), the IOPS figures are important, but they're not the only figure that matters.

Much effort goes into measuring IOPS for patterns that simulate databases, web servers, file servers and so on. For gaming, it really depends on the application, since no two games will be identical. Some might involve huge textures being loaded from disk, while others might be structured differently. Although the 4K QD32 IOPS figure is relevant, it’s best thought of as an indicator of SSD performance with a heavier workload rather than a definitive, comparable benchmark for overall performance.


We've tested dozens of SATA SSDs over the years, but since many have been discontinued and we now prefer the 480-525GB capacities, we've trimmed down our list to drives that are at least 480GB in size, as well as being readily available and worth considering. There are older models that appear at sometimes lower prices, but we no longer actively track those drives.

The Crucial MX500 and Samsung 860 Evo are the top picks for SATA drives, while the previous generation Samsung 850 Evo, Crucial MX300, and others are still available and worth considering, depending on pricing. There are new SSDs coming out on a regular basis, though in the SATA world it will be hard to top the 860 Evo/Pro and MX500. Here's the short take on the currently available and tested SSDs.

Adata's SX7000 has been out for nearly a year, but we only recently tested the drive. Performance is at the bottom of the NVMe spectrum, but with a price only slightly higher than SATA drives of similar capacity, it manages to deliver a good value. Check our best NVMe SSD guide if you're looking for faster options.

Crucial's MX500 is a newcomer, boasting improved performance and similar pricing to the previous Crucial MX300. The MX300 drives are slightly higher capacity but also a bit slower, so we prefer the newer model right now.

The HP S700 Pro is intended to compete with the Samsung 860/850 Pro. Unfortunately, performance doesn't quite live up to that lofty goal, though the price makes it a potentially viable alternative.

Intel has had many SSD models over the years, including the 520 and 730, which have been superseded by the likes of the 750 and 600p. These days, Intel is mainly focused on M.2 and NVMe solutions, and the 760p 512GB was our previous pick for the best budget M.2 SSD, but current prices have caused us to switch to the Adata drive.

Mushkin's Reactor line is getting somewhat long in the tooth, and performance can't quite compete with the better SATA drives, but the 1TB (960GB) model in particular is worth a look if you want a lot of solid-state storage at a reasonable price.

OCZ had some financial difficulties but was saved by Toshiba, who now owns the OCZ assets and continues to sell drives under the OCZ brand. The OCZ TR200 is the latest addition to the family, replacing the former TR150. It's slightly faster overall but the 480GB capacity we prefer isn't as widely available. The OCZ VX500 meanwhile is a higher performance MLC offering, but the price is simply too high to make it competitive.

Samsung is the 800 pound gorilla of SSDs. They have the advantage of owning the NAND and controller fabrication facilities, plus the company does all its own firmware. That allows it to compete on price while also offering better performance than many other companies. 3D V-NAND also proves to be a potent combination, with the new 860 Evo and 860 Pro displacing the previous 850 Evo and 850 Pro. Simply put, you can't go wrong with a Samsung SSD, though other drives can beat Samsung on price. For NVMe, Samsung's 960 Evo is easily the best choice.

Silicon Power typically offers drives targeting budget shoppers, though the NAND shortage has hit its drives particularly hard. Where we once saw the 480GB S55/S60 going for around $90-$100, prices shot up to more than $200 for a while. The S55 is back in stock at Amazon for a low $113, making it the least expensive drive in that capacity that we're tracking, but it's also the slowest SSD we're tracking.

The Transcend SSD370S series sticks with MLC NAND instead of going the TLC route, and combines that with a Silicon Motion 2246EN controller. The result is relatively impressive performance—a bit behind the 860/850 Pro and 860/850 Evo, but worth a look, particularly if pricing comes down. But current pricing puts it out of consideration.

Our final entrant—alphabetically—is Western Digital's Blue 1TB SSD. A long-time player in the storage market, WD has now entered the SSD arena. Unfortunately, the performance is rather low due to the use of TLC NAND, but pricing is at least reasonable. Like many SSDs, this brand is a simple price cut away from a stronger recommendation.

Closing thoughts and a look to the future

With SSDs becoming a better value, there's simply no reason not to have one in your PC. If you were an early adopter with a 64GB or 128GB drive and find that capacity to be rather limiting, it's time to consider an upgrade. A 512GB SSD now costs a lot less than a 128GB model did a few years ago, and we strongly recommend at least 240GB for your OS and primary applications, with 480GB and larger providing plenty of room for some games and other goodies.

While ubiquitous, standard 2.5-inch SSDs are now fundamentally limited by the speed of the SATA bus, which has a maximum theoretical throughput of 6Gbit/sec. In real world terms, the performance ceiling is around 550MB/sec for a SATA SSD, and it’s clear this is imposing a limit on flash memory technology.

The solution is to switch to the PCI Express bus, where a x4 connection allows for up to 3.94GB/sec. Unfortunately, the PCIe SSDs are (often substantially) more expensive, and they're limited to either PCIe add-in boards, M.2 drives, or the less comment U.2 form factor, which means only newer PCs have the requisite NVMe support. If you're using an Intel Skylake or newer CPU, or AMD Ryzen or newer, you should consider M.2 drives as higher performance alternative.

In another 10 years, solid state technology may make today's SATA SSDs look like floppy disks. But for now, SATA SSDs still offer the best performance you're going to get for your dollar, and the Crucial MX500 is currently the best choice for a great gaming SSD.

Some online stores give us a small cut if you buy something through one of our links. Read our affiliate policy for more info.